Solution of second kind Fredholm integral equations by means of Gauss and anti-Gauss quadrature rules
نویسندگان
چکیده
منابع مشابه
Generalized anti-Gauss quadrature rules
Abstract. Gauss quadrature is a popular approach to approximate the value of a desired integral determined by a measure with support on the real axis. Laurie proposed an (n+1)-point quadrature rule that gives an error of the same magnitude and of opposite sign as the associated n-point Gauss quadrature rule for all polynomials of degree up to 2n + 1. This rule is referred to as an anti-Gauss ru...
متن کاملA note on the Gauss-Jacobi quadrature formulae for singular integral equations of the second kind
A fast and efficient numerical method based on the Gauss-Jacobi quadrature is described that is suitable for solving Fredholm singular integral equations of the second kind that are frequently encountered in fracture and contact mechanics. Here we concentrate on the case when the unknown function is singular at both ends of the interval. Quadrature formulae involve fixed nodal points and provid...
متن کاملCalculation of Gauss Quadrature Rules
Several algorithms are given and compared for computing Gauss quadrature rules. It is shown that given the three term recurrence relation for the orthogonal polynomials generated by the weight function, the quadrature rule may be generated by computing the eigenvalues and first component of the orthornormalized eigenvectors of a symmetric tridiagonal matrix. An algorithm is also presented for c...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولNumerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method
In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2020
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-020-01163-7